(1). ΒΓ ˆ, οπότε Γ ˆ ˆ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(1). ΒΓ ˆ, οπότε Γ ˆ ˆ"

Transcript

1 4 ο φυλλάδιο νισοτικές σχέσεις (τριωνική νισότητ) (Version ) 3.1 Θεώρημ Κάθε πλευρά τριώνου είνι μικρότερη πό το άθροισμ των δύο άλλων κι μελύτερη πό τη διφορά τους. Απόδειξη: Έστω τρίωνο ΑΒΓ. Θ ποδείξουμε ρχικά ότι < β +. Γι' υτό προεκτείνουμε την πλευρά ΒΑ, προς το Α κτά τμήμ ΑΔ = ΑΓ. Τότε το τρίωνο ΑΓΔ είνι ισοσκελές οπότε =Γ ˆ ˆ 1 (1). Η ΓΑ είνι εσωτερική ημιευθεί της ωνίς ΒΓ ˆ, οπότε Γ ˆ ˆ 1 < ΒΓ (). Από (1) κι () πίρνουμε ˆ < ΒΓ ˆ, πό την οποί σύμφων με το θεώρημ της 3.11 προκύπτει ότι ΒΓ < ΒΔ ΒΓ < Β ΒΓ < ΒΑ + Α < + β < β + Όμοι συμπερίνουμε ότι β < + κι < + β. Από τις νισότητες υτές, ντίστοιχ προκύπτει ότι > β -,ν β ή > - β, ν β, δηλδή κι στις δύο περιπτώσεις ισχύει το ζητούμενο. Επομένως: Πόρισμ β < < β +, β Κάθε χορδή κύκλου είνι μικρότερη ή ίση της διμέτρου. Κ. Γι το τρίωνο του πρκάτω σχήμτος ισχύει:. = 7 β. =1. 1<<7 δ.>7 ε. 0<<1 Κυκλώστε το ράμμ της σωστής πάντησης κι ιτιολοήστε την πάντησή σς. Απάντηση: Aπό την τριωνική νισότητ 4 3< < < < 7 Αθνσίου Δημήτρης (Μθημτικός) asepfreedom@yahoo.gr peira.gr 1

2 3 Κ3. Υπάρχει τρίωνο ΑΒΓ με = κι β = ; Δικιολοήστε την πάντησή σς. 3 5 Απάντηση: 3 Από την = συμπερίνω ότι < κι πό την β = προκύπτει ότι β<. 3 5 Αρ η είνι η μελύτερη πλευρά του τριώνου οπότε πρέπει: < + β β = + = + = < Αρ δεν υπάρχει τρίωνο με δοσμένες πλευρές πλευρές. Εφρμοή 1 η ii) Αν Μ είνι έν εσωτερικό σημείο ενός τριώνου ΑΒΓ, ν ποδειχθεί ότι: ΒΜ + ΜΓ < ΒΑ + ΑΓ Eστω Δ το σημείο τομής της προέκτσης του ΒΜ με την ΑΓ. Με εφρμοή της τριωνικής νισότητς στο τρίωνο ΑΒΔ ΒΔ<ΒΑ+ΑΔ ΒΜ+ΜΔ<ΒΑ+ΑΔ (1) Με εφρμοή της τριωνικής νισότητς στο τρίωνο ΔΜΓ ΜΓ<ΜΔ+ΔΓ () Προσθέτοντς κτά μέλη τις σχέσεις (1) κι () βρίσκουμε: ΒΜ + Μ + ΜΓ < ΒΑ + Α + Μ + Γ ΒΜ + ΜΓ < ΒΑ + Α + Γ ΒΜ + ΜΓ < ΒΑ + ΑΓ Ε10. Οι κωμοπόλεις Κ1, Κ, Κ3 πέχουν πό τη πόλη Π (πρκάτω σχήμ), ποστάσεις 7, 6 κι 10 km ντίστοιχ. Έν υτοκίνητο ξεκινάει πό την κωμόπολη Κ1 κι κολουθώντς τη διδρομή Κ1ΚΚ3Κ1 επιστρέφει στην Κ1. Ο χιλιομετρητής του ράφει ότι ι υτή τη διδρομή διήνυσε πόστση 48 km. Είνι υτό δυντόν; Δικιολοήστε την πάντησή σς. Mε εφρμοή της τριωνικής νισότητς στ τρίων ΠΚ1Κ, ΠΚ1Κ3, ΠΚΚ3 πίρνουμε ντίστοιχ: ΚΚ < ΚΠ+ ΠΚ ΚΚ < Κ Κ < ΚΚ <ΚΠ+ΠΚ ΚΚ < ΚΚ < ΚΚ < ΚΠ+ΠΚ ΚΚ < ΚΚ < Προσθέτοντς υτές τις νισότητες κτά μέλη βρίσκουμε: ΚΚ + ΚΚ + ΚΚ < ΚΚ + ΚΚ + ΚΚ < Επομένως ο χιλιομετρητής θ έπρεπε ν ράψει πόστση μικρότερη του 46 κι όχι 48. Αθνσίου Δημήτρης (Μθημτικός) asepfreedom@yahoo.gr peira.gr

3 Α3. Δίνετι τρίωνο ΑΒΓ με ΑΒ<ΑΓ κι η διάμεσος ΑΜ.Ν ποδείξετε ότι: i) ΒΑΜ ˆ > ΜΑΓ ˆ, ii) β β + < µ < iii) µ < τ β Προεκτείνουμε την διάμεσο κτά ΜΑ = ΑΜ κι φέρνω κι την ΑΓ. Τ τρίωνο ΑΜΒ κι Α ΜΓ έχουν ΜΑ = ΑΜ ΒΜ = ΜΓ είνι ίσ οπότε ΑΒ = ΓΑ κι ΒΑΜ ˆ = ΜΑˆ Γ ˆ ˆ Μ =Μ 1 i) Αφού μς δίνετι ΑΓ>ΑΒ κι ΑΒ = ΓΑ θ είνι ΑΓ > ΓΑ οπότε τρίωνο Α ΓΑ πό το 3.11 Θεώρημ ΜΑˆ Γ > ΜΑΓ ˆ πό την οποί προκύπτει λόω της ΒΑΜ ˆ = ΜΑˆ Γ ότι ΒΑΜ ˆ > ΜΑΓ ˆ ii) Με εφρμοή της τριωνικής νισότητς στο τρίωνο Α ΓΑ πίρνουμε: ΑΓ ΓΑ < ΑΑ < ΑΓ + ΓΑ ΑΓ ΑΒ < ΑΑ < ΑΓ + ΑΒ β < µ < β + β µ β + β β + < < < µ < iii) Σύμφων με το ii) β β µ <, µ β <, µ < κι με πρόσθεση κτά μέλη πίρνουμε: β β µ β < + + µ β < + β + µ β < τ Αθνσίου Δημήτρης (Μθημτικός) asepfreedom@yahoo.gr peira.gr 3

4 Α4. Έστω κύκλος (Ο,R) διμέτρου ΑΒ κι σημείο Σ της ημιευθείς ΟΑ. Γι κάθε σημείο Μ του κύκλου ν ποδειχθεί ότι ΣΑ ΣΜ ΣΒ. (Το τμήμ ΣΑ λέετι πόστση του Σ πό τον κύκλο). Αφού το Σ είνι εξωτερικό σημείο του κύκλου ισχύει ΣΟ>κτίν του κύκλου οπότε ΣΟ>ΟΜ. Αν τ Σ,Ο, Μ δεν είνι συνευθεικά, με εφρμοή της τριωνικής νισότητς στο τρίωνο ΣΟΜ ΣΟ ΟΜ < ΣΜ < ΣΟ + ΜΟ ΣΟ ΟΑ < ΣΜ < ΣΟ + ΟΒ ΣΑ < ΣΜ < ΣΒ Αν Μ Ατότε: ΣΑ = ΣΜ < ΣΒ Αν Μ Βτότε: ΣΑ < ΣΜ = ΣΒ Αθνσίου Δημήτρης (Μθημτικός) asepfreedom@yahoo.gr peira.gr 4

5 ΕΦΑΡΜΟΓΗ 4η Δίνετι μι ευθεί ε, δύο σημεί Α,Β προς το ίδιο μέρος της.αν πάρουμε διάφορ σημεί Μ1, Μ, Μ3,...πάνω στην ε, τότε το άθροισμ των ποστάσεών τους πό τ Α κι Β ΜΑ+ΜΒ i i πίρνει διάφορες τιμές. Γι ποιά θέση του Μ το άθροισμ ΜΑ+ΜΒ πίρνει τη μικρότερή του τιμή; Φέρνουμε το συμμετρικό Α' του Α ως προς την ε. Τότε η ε είνι μεσοκάθετη του ΑΑ, οπότε ΜΑ = ΜΑ κι επομένως ΜΑ + ΜΒ = ΜΑ + ΜΒ (1). Αν το Μ δεν είνι σημείο του τμήμτος ΑΒ, πό το τρίωνο ΜΑ Β (τριωνική νισότητ) ΜΑ + ΜΒ > Α Β (). Αν το Μ είνι σημείο του τμήμτος ΑΒ ΜΑ + ΜΒ = Α Β (3) Aρ σε κάθε περίπτωση (συνδιάζοντς τις () κι (3)) ισχύει: ΜΑ + ΜΒ Α Β οπότε λόω της (1) ΜΑ + ΜΒ Α Β Αρ η μικρότερη τιμή που μπορεί ν πάρει το ΜΑ + ΜΒ είνι ΑΒ κι υτή επιτυχάνετι ότν το Μ είνι το σημείο τομής της ΑΒ με την ευθεί ε. Αθνσίου Δημήτρης (Μθημτικός) asepfreedom@yahoo.gr peira.gr 5

6 Σ1. Έστω κυρτό τετράπλευρο ΑΒΓΔ κι Ο εσωτερικό σημείο του. i) Ν ποδείξετε ότι: OA+OB+ΟΓ+ΟΔ > AB+ΒΓ+ΓΔ+ΔΑ ii) Γι ποι θέση του Ο το άθροισμ ΟΑ + ΟΒ + ΟΓ + ΟΔ ίνετι ελάχιστο; i) Mε εφρμοή της τριωνικής νισότητς στ τρίων ΑΟΒ, ΒΟΓ, ΓΟΔ κι ΔΟΑ πίρνουμε ντίστοιχ: AB<OA+OB, ΒΓ<ΟΒ+ΟΓ, ΓΔ<ΟΓ+ΟΔ, κι ΑΔ<ΟΑ+ΟΔ, πό τις οποίες με πρόσθεση κτά μέλη προκύπτει: AB+ΒΓ+ΓΔ+ΔΑ<OA+OB+ΟΒ+ΟΓ+ΟΓ+ΟΔ+ΟΔ+ΟΑ AB+ΒΓ+ΓΔ+ΔΑ<OA+OB+ΟΓ+ΟΔ ( ) AB+ΒΓ+ΓΔ+ΔΑ< OA+OB+ΟΓ+ΟΔ AB+ΒΓ+ΓΔ+ΔΑ <OA+OB+ΟΓ+ΟΔ AB+ΒΓ+ΓΔ+ΔΑ OA+OB+ΟΓ+ΟΔ> ii) Αν το Ο δεν είνι σημείο της ΑΓ, πό το τρίωνο ΑΟΓ προκύπτει ότι : ΟΑ + ΟΓ > ΑΓ κι ν το Ο είνι σημείο της διωνίου ΑΓ θ είνι ΟΑ + ΟΓ = ΑΓ.Αρ σε κάθε περίπτωση ισχύει ΟΑ + ΟΓ ΑΓ (1) κι το άθροισμ ΟΑ + ΟΓ ίνετι ελάχιστο ότν ίνετι ίσο με ΑΓ το οποίο συμβίνει ότν Ο σημείο της ΑΓ. Αν το Ο δεν είνι σημείο της ΒΔ, πό το τρίωνο ΒΟΔ προκύπτει ότι : ΟΒ + Ο > Β κι ν το Ο είνι σημείο της διωνίου ΒΔ θ είνι ΟΒ + Ο = Β.Αρ σε κάθε περίπτωση ισχύει ΟΒ + Ο Β () κι το άθροισμ ΟΒ + Ο ίνετι ελάχιστο ότν ίνετι ίσο με ΒΔ το οποίο συμβίνει ότν Ο σημείο της ΒΔ. Αθροίζοντς τις (1) κι () ΟΑ+ΟΓ+ΟΒ+Ο ΑΓ+Β ΟΑ+ΟΒ+ΟΓ+Ο ΑΓ+Β δηλδή η ελάχιστη τιμή του ΟΑ + ΟΒ + ΟΓ + Ο είνι ΑΓ + Β κι συμβίνει ότν το Ο είνι σημείο της ΑΓ κι της ΒΔ δηλδή ότν το Ο είνι σημείο τομής των διωνίων Ο Κ Αθνσίου Δημήτρης (Μθημτικός) asepfreedom@yahoo.gr peira.gr 6

7 Σ. Σε τρίωνο ΑΒΓ (ΑΒ<ΑΓ) προεκτείνουμε τις πλευρές ΒΑ κι ΓΑ προς το μέρος του Α κτά τμήμτ ΑΔ=ΑΓ κι ΑΕ=ΑΒ ντίστοιχ.η ευθεί ΔΕ τέμνει την ευθεί ΒΓ στο σημείο Μ.Ν ποδείξετε ότι: i) το τρίωνο ΜΒΕ είνι ισοσκελές, ii) η διχοτόμος της ΒΜΕ διέρχετι πό το σημείο Α. xc Σ3. Έστω Ο το σημείο τομής των διωνίων ενός κυρτού τετρπλεύρου ΑΒΓΔ. Ν ποδείξετε ότι: i) κάθε διώνιος είνι μικρότερη της ημιπεριμέτρου του τετρπλεύρου, ii) ΑΓ+ΒΔ>ΑΒ+ΓΔ κι ΑΓ+ΒΔ>ΑΔ +ΒΓ, iii) το άθροισμ των διωνίων είνι μελύτερο της ημιπεριμέτρου του τετρπλεύρου κι μικρότερο της περιμέτρου του τετρπλεύρου. i) Στο τρίωνο ΑΒΓ πό την τριωνική νισότητ ΑΓ<ΑΒ+ΒΓ Στο τρίωνο ΑΔΓ πό την τριωνική νισότητ ΑΓ<ΑΔ+ΔΓ Αθροίζοντς κτά μέλη τις (1) κι () ΑΓ+ΑΓ<ΑΒ+ΒΓ+ΑΔ+ΔΓ ΑΓ < τ ΑΓ < τ όπου με τ συμβολίζουμε την ημιπερίμετρο του τετρπλεύρου κι με τ την περίμετρό του. ii) Στο τρίωνο ΑΟΒ πό την τριωνική νισότητ AO+OB>AB (3) Στο τρίωνο ΔΟΓ πό την τριωνική νισότητ ΔΟ+OΓ>ΔΓ (4) Προσθέτοντς κτά μέλη τις (3) κι (4) προκύπτει: ΑΟ+ΟΒ+ΔΟ+ΟΓ>ΑΒ+ΔΕ ΑΟ+ ΟΓ+ΟΒ+ΔΟ+ >ΑΒ+ΔΕ ΑΓ+ΒΔ >ΑΒ+ΔΕ (5) Στο τρίωνο ΑΟΔ πό την τριωνική νισότητ AO+OΔ>AΔ (6) Στο τρίωνο ΒΟΓ πό την τριωνική νισότητ ΒΟ+OΓ>ΒΓ (7) Προσθέτοντς κτά μέλη προκύπτει: Αθνσίου Δημήτρης (Μθημτικός) peira.gr 7

8 ΑΟ+ΟΔ+ΒΟ+ΟΓ>ΑΔ+ΒΓ ΑΟ+ ΟΓ+ΒΟ+ΟΔ >ΑΔ+ΒΓ ΑΓ+ΒΔ >ΑΔ+ΒΓ (8) Προσθέτοντς κτά μέλη τις (5) κι (8) iii) ΑΓ+ Β >ΑΒ+ΒΓ+Γ + Α ( ) ΑΒ+ΒΓ+Γ + Α ΑΓ + Β >. ΑΓ+Β >ΑΒ+ΒΓ+Γ + Α Σχόλιο 3.1 Γενικότερ ισχύειτο ευθύρμμο τμήμ ΑΒ είνι μικρότερο πό κάθε τεθλσμένη.0 ρμμή που έχει άκρ τ Α κι Β. Σ4. Στο εσωτερικό ορθής ωνίς xôy θεωρούμε σημείο Γ κι στις πλευρές της Οχ, Oy τ σημεί Α, Β ντίστοιχ. Ν ποδείξετε ότι η περίμετρος του τριώνου ΑΒΓ είνι μελύτερη πό ΟΓ. Σκέψη: Σκεφτόμστε πως μπορούμε ν δημιουρήσουμε έν τμήμ ίσο με ΟΓ. Μι ιδέ είνι υτή του βιβλίου ν δημιουρήσει δύο «ντίρφ» του ΟΓ με κοινό άκρο το Ο κι ν δείξει ότι είνι συνευθεικά. Μι άλλη ιδέ, η πιο υθόρμητη κι πιο πλή είνι ν προεκτείνουμε το ΓΟ κι ν πάρουμε σημείο Γ ώστε Γ Ο=ΟΓ. Προσπθούσ ν δώ ιτί μι τέτοι ιδέ δεν θ ήτν ποτελεσμτική (φού δεν την χρησιμοποιεί το σχολικό) λλά κτέληξ κριβώς στο ντίθετο.κι λύση δίνει που είνι μάλιστ κι πιο πλή. Αθνσίου Δημήτρης (Μθημτικός) asepfreedom@yahoo.gr peira.gr 8

9 1 Η Λύση σχολικού Από το Γ φέρνουμε την κάθετη στην Οx, που την τέμνει στο σημεί Δ κι πίρνουμε τμήμ Γ Δ=ΓΔ (το Γ λέετι συμμετρικό του Γ ως προς Οx). Aφού η Οx μεσοκάθετος του ΓΓ ισχύει ΑΓ =ΑΓ= κι ΟΓ =ΟΓ. Από το Γ φέρνουμε την κάθετη στην Οy, που την τέμνει στο σημείo Ε κι πίρνουμε τμήμ Γ Ε=ΓΕ (το Γ λέετι συμμετρικό του Γ ως προς Οy). Aφού η Οx μεσοκάθετος του ΓΓ ισχύει ΒΓ =ΒΓ= κι ΟΓ =ΟΓ. Θ δείξουμε ότι η Γ ΟΓ ˆ είνι ευθεί.γι υτό ρκεί ν δείξουμε ότι Γ ΟΓ ˆ = 180 Στο ισοσκελές τρίωνο Γ ΟΓ το ύψος ΟΔ είνι κι διχοτόμος άρ Ο ˆ ˆ 1 =Ο Στο ισοσκελές τρίωνο Γ ΟΓ το ύψος ΟΕ είνι κι διχοτόμος άρ Ο ˆ ˆ 3 =Ο 4 Οπότε: ( ) ΓΟΓ ˆ =Ο ˆ +Ο ˆ +Ο ˆ +Ο ˆ = Ο ˆ + Ο ˆ == Ο ˆ +Ο ˆ = 90 = Αρ το ΓΓ είνι ευθύρμμο τμήμ. Από σχόλιο του σχολικού βιβλίου 3.1 νωίζουμε ότι: «Γενικότερ ισχύει το ευθύρμμο τμήμ ΑΒ είνι μικρότερο πό κάθε τεθλσμένη ρμμή που έχει άκρ τ Α κι Β.» Αρ Η Λύση Γ Γ <Γ Β+ΒΑ+ΑΓ =ΓΒ+ΒΑ+ΑΓ= Πίρνουμε το συμμετρικό Γ του Γ ως προς Ο κθώς κι το συμμετρικό Α του Α ως προς Ο. Είνι ΓΓ = ΟΓ κι Α Β = ΑΒ (το τρίωνο Α ΒΑ είνι ισοσκελές φού το ύψος είνι κι διάμεσος. περίμετρος του ΑΒΓ Επίσης Α Β = ΑΒ φού τ τρίων Α ΟΓ κι ΑΟΓ είνι ίσ (ΠΓΠ). Αρ πό το σχόλιο του σχολικού βιβλίου 3.10 ΓΓ<ΓΑ +ΑΒ+ΒΑ=ΓΑ+ΒΑ+ΓΑ= περίμετρος του ΑΒΓ Αθνσίου Δημήτρης (Μθημτικός) asepfreedom@yahoo.gr peira.gr 9

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

= ΑΓ, τότε τα σημεία Α, Β, Γ είναι συνευθειακά. Σ Λ 2. * Αν. = (- 2, 2) είναι παράλληλο με το

= ΑΓ, τότε τα σημεία Α, Β, Γ είναι συνευθειακά. Σ Λ 2. * Αν. = (- 2, 2) είναι παράλληλο με το Ερωτήσεις του τύπου «Σωστό-Λάθος» * Αν ΑΒ ΒΓ ΑΓ τότε τ σημεί Α Β Γ είνι συνευθεικά Σ Λ * Αν * Αν ΑΒ ΒΓ τότε ΓΔ 4 * Αν λ τότε // Σ Λ 5 * Αν ΑΒ ΒΑ τότε ΑΒ τότε ΑΔ Σ Λ Σ Λ Σ Λ 6 * Τ δινύσμτ ΑΒ κι ΟΑ - ΟΒ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. γ < ΟΑ + ΟΒ ΜΓ< ΟΜ + ΟΓ γ + ΜΓ < ΟΑ + ΟΒ + ΟΜ + ΟΓ γ + ΜΓ < (ΟΑ + ΟΓ) + (ΟΜ + ΟΒ) γ + ΜΓ < ΑΓ + ΜΒ γ + ΜΓ < β + ΜΒ

ΑΣΚΗΣΕΙΣ. γ < ΟΑ + ΟΒ ΜΓ< ΟΜ + ΟΓ γ + ΜΓ < ΟΑ + ΟΒ + ΟΜ + ΟΓ γ + ΜΓ < (ΟΑ + ΟΓ) + (ΟΜ + ΟΒ) γ + ΜΓ < ΑΓ + ΜΒ γ + ΜΓ < β + ΜΒ 3.0 3. ΘΕΩΡΙ. νισοτικές σχέσεις σε τρίωνο Κάθε εξωτερική ωνί τριώνου είνι µελύτερη πό τις πένντι εσωτερικές. πένντι πό άνισες πλευρές βρίσκοντι άνισες ωνίες κι ντίστροφ. Τριωνική νισότητ : β < < β + (υποτίθετι

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ ε ω μ ε τ ρ ί AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΩΝΩΝ 1. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ=Α) προεκτείνουμε τη βάση Β κτά ίσ τμήμτ Β=Ε. Ν δείξετε ότι το τρίγωνο ΑΕ είνι ισοσκελές. 2. Ν κτσκευάσετε σε ισοσκελές τρίγωνο

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβδά ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β. Κορτίκη Β. Κουτσογούλ Μ. Ρούσσ Γ. Ευθυμίου Μ. Ζφείρη ΕΜΕ Πράρτημ Τρικάλων ΑΣΚΗΣΗ η i. Ν υπολογιστούν οι πλευρές, β, γ του ορθογωνίου τριγώνου ΑΒΓ

Διαβάστε περισσότερα

3o ΚΕΦΑΛΑΙΟ : Τρίγωνα

3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 4 η διδακτική ενότητα : Ισότητα τριγώνων Ερωτήσεις κατανόησης 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις : α) Υπάρχουν σημεία του επιπέδου που

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο )

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο ) 0 05 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -0 ο _9005 ΘΕΜΑ Β (7 ο -9 ο ) Σε τρίγωνο ΑΒΓ η διχοτόµος της γωνίς Αˆ τέµνει την πλευρά ΒΓ σε σηµείο, τέτοιο ώστε Β 3 =

Διαβάστε περισσότερα

ΑΕ = ΑΓ από τα δεδομένα ΒΑΕ=Α+ΓΑΕ=Α+ΒΑ = ο φυλλάδιο ΛΥΣΕΙΣ (Version )

ΑΕ = ΑΓ από τα δεδομένα ΒΑΕ=Α+ΓΑΕ=Α+ΒΑ = ο φυλλάδιο ΛΥΣΕΙΣ (Version ) 3.-3. ο φυλλάδιο ΛΥΣΕΙΣ (Version -0-06) Ε.Στο εξωτερικό ενός τριγώνου ΑΒΓ θεωρούμε τμήματα ΑΔ = ΑΒ και ΑΕ = ΑΓ, ώστε ΒΑ = ΓΑΕ. Να αποδείξετε ότι ΒΕ = ΓΔ. Λύση Τα τρίγωνα ΑΒΕ και ΑΔΓ έχουν: ΑΒ = Α από τα

Διαβάστε περισσότερα

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ

Βασικά γεωμετρικά σχήματα- Μέτρηση γωνίας μέτρηση μήκους - κατασκευές ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙ: Κεφάλιο 1 ο σικά γεωμετρικά σχήμτ- Μέτρηση γωνίς μέτρηση μήκους - κτσκευές ΣΚΗΣΕΙΣ 1. Πάνω στο ευθύγρμμο τμήμ = 6cm, ν πάρετε έν σημείο Γ, τέτοιο ώστε Γ = 2cm κι έν σημείο Δ, τέτοιο ώστε Δ =

Διαβάστε περισσότερα

3.12 Τριγωνική ανισότητα (ΛΥΣΕΙΣ) version

3.12 Τριγωνική ανισότητα (ΛΥΣΕΙΣ) version 3.12 Τριγωνική ανισότητα (ΛΥΣΕΙΣ) version 30-11-2016 Θεώρημα Κάθε πλευρά τριγώνου είναι μικρότερη από το άθροισμα των δύο άλλων και μεγαλύτερη από τη διαφορά τους. β γ < α < β + γ, β γ ή β γ < α < β +

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ (version ) ΘΕΩΡΙΑ. ˆ x y. xο ˆ y το μέτρο του τόξου ΑΒ.

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ (version ) ΘΕΩΡΙΑ. ˆ x y. xο ˆ y το μέτρο του τόξου ΑΒ. ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ 06-7 (version 8--07) ΘΕΩΡΙΑ Τι λέγεται επίκεντρη γωνία και τι αντίστοιχο τόξο της; i) Mια γωνία λέγεται επίκεντρη, όταν η κορυφή της είναι το κέντρο ενός κύκλου. To τόξο του

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης

3.3 Η ΕΛΛΕΙΨΗ. Ορισμός Έλλειψης 0 33 Η ΕΛΛΕΙΨΗ Ορισμός Έλλειψης Έστω E κι Ε δύο σημεί ενός επιπέδου Ονομάζετι έλλειψη με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ E κι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ 05-6 (version 3--06) Σημειώστε με μονές, διπλές ή και τριπλές γραμμούλες τα κατάλληλα ίσα κύρια στοιχεία ώστε τα τρίγωνα αυτά να είναι ίσα σύμφωνα με καθένα από τα 3 κριτήρια

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

Εφαρμογή 1 η σχολικό

Εφαρμογή 1 η σχολικό 3.3-3.4 3o ΦΥΛΛΑΔΙΟ ΛΥΣΕΙΣ (5--06) 3.3-3.4 Εφαρμογή η σχολικό Θεωρούμε γωνία x Ο y και δύο κύκλους (Ο,ρ), (Ο, R) με ρ

Διαβάστε περισσότερα

Θέµα 7 ο. Τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Να δειχθεί ότι: ΒΕ 2 = ΕΓ Ε

Θέµα 7 ο. Τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Να δειχθεί ότι: ΒΕ 2 = ΕΓ Ε 0 ΓΕΝΙΚΕΣ Θέµ ο Τρίγωνο ΑΒΓ είνι ισοσκελές (ΑΒ = ΑΓ). Φέρνουµε Ε // ΒΓ ( ΒΓ, Ε ΑΓ). Ν δειχθεί ότι: ΒΕ = ΕΓ Ε Θέµ ο Στη διγώνιο Β τετργώνου ΑΒΓ πίρνουµε τυχίο σηµείο Ο. Ν δειχθεί ότι: Γ - ΓΟ = Ο Ο Θέµ ο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά.

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά. ΣΗΜΕΙΩΣΗ: Προυσίσ τις ποδείξεις κάπως νλυτικά ώστε ν γίνουν πιο κτνοητές.εσείς μπορείτε ν τις προυσιάσετε πιο λιτά. Δίνετι τυχόν ορθογώνιο τρίγωνο ΑΒΓ( ˆΑ=1 =1 ορθή) κι Δ η προβολή της κορυφής Α στην υποτείνουσ.ν

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ 05-6 (version 6--05) Σημειώστε με μονές, διπλές ή και τριπλές γραμμούλες τα κατάλληλα ίσα κύρια στοιχεία ώστε τα τρίγωνα αυτά να είναι ίσα σύμφωνα με καθένα από τα 3 κριτήρια

Διαβάστε περισσότερα

Αν ο λόγος των καθέτων πλευρών ενός ορθογωνίου τριγώνου είναι 4, τότε ο λόγος των προβολών τους στην υποτείνουσα είναι α.2 β.4 γ. 16 δ.

Αν ο λόγος των καθέτων πλευρών ενός ορθογωνίου τριγώνου είναι 4, τότε ο λόγος των προβολών τους στην υποτείνουσα είναι α.2 β.4 γ. 16 δ. 1 9.1 9. σκήσεις σχολικού ιλίου σελίδς 185-186 ρωτήσεις κτνόησης 1. Έν ορθοώνιο τρίωνο ( ˆ ο 90 ) έχει 6 κι 8. Ποιο είνι το µήκος της διµέσου Μ ; + 6 + 6 100 10 κι Μ 5. ν ο λόος των κθέτων πλευρών ενός

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων 8 Άλλοι τύποι γι το εµβδόν τριγώνου Λόγος εµβδών οµοίων τριγώνων - πολυγώνων Α ΑΠΑΡΑΙΤΗΤΣ ΓΝΩΣΙΣ ΘΩΡΙΑΣ Άλλοι τύποι γι το εµβδόν τριγώνου Με τη βοήθει του βσικού τύπου γι το εµβδόν τριγώνου, µε µήκη πλευρών,

Διαβάστε περισσότερα

i) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 ii) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2Α 2 iii) ΑΒ 2 + ΑΓ 2 = 2ΒΓ Μ iν) ΑΒ 2 ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 = 2ΑΜ 2 2 = 2ΑΜ 2 + 2ΒΜ 2

i) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 ii) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2Α 2 iii) ΑΒ 2 + ΑΓ 2 = 2ΒΓ Μ iν) ΑΒ 2 ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 = 2ΑΜ 2 2 = 2ΑΜ 2 + 2ΒΜ 2 1 9.5 9.6 σκήσεις σχολικού βιβλίου σελίδς 198 199 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ η Μ είνι διάµεσος κι ύψος. Ποι πό τις πρκάτω σχέσεις είνι σωστή. ιτιολογήστε την πάντηση σς. A i) Μ Μ ii) Μ iii)

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος

Διαβάστε περισσότερα

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0.

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0. Ερωτήσεις νάπτυξης 1. ** Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης 4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα

ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες.

ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες. ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες. Στο ισοσκελές τρίγωνο ΑΒΓ φέρνουµε διχοτόµο ΑΔ Σύγκριση Τριγώνων ΑΒΔ και ΑΓΔ: -ΑΒ=ΑΓ (δεδοµένο) -ΒΑΔ=ΓΑΔ (αφού ΑΔ διχοτόµος) -ΑΔ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 76 Κεφάλιο 3ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Απντήσεις στις ερωτήσεις του τύπου Σωστό - Λάθος. Σ 0. Σ 39. Λ 58. Σ. Σ. Λ 40. Σ 59. Σ 3. Σ. Σ 4. Σ 60. Λ 4. Λ 3. Λ 4. Σ 6. Λ 5. Σ 4.

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ. Από τη κορυφή Β τριγώνου Γ φέρουµε ευθεί κάθετη στη διχοτόµο της Aεξ, η οποί τέµνει τη διχοτόµο υτή στο κι την προέκτση της ΓΑ στο Ε. Αν Μ µέσον της ΒΓ ν δειχθεί

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ 05-6 (version 5--05) Σημειώστε με μονές, διπλές ή και τριπλές γραμμούλες τα κατάλληλα ίσα κύρια στοιχεία ώστε τα τρίγωνα αυτά να είναι ίσα σύμφωνα με καθένα από τα 3 κριτήρια

Διαβάστε περισσότερα

ΑΠΟΔΕΙΚΤΙΚΕΣ (Version )

ΑΠΟΔΕΙΚΤΙΚΕΣ (Version ) 6.-6.4 ΑΠΟΔΕΙΚΤΙΚΕΣ (Version 9-9-05) Σχόλιο ( 6.) Τα τόξα που περιέχονται μεταξύ παραλλήλων χορδών είναι ίσα και αντίστροφα αν δύο τόξα που περιέχονται μεταξύ μή τεμνόμενων χορδών είναι ίσα, τότε οι χορδές

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130 ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

9.7. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. Στα παρακάτω σχήµατα να υπολογιστούν οι τιµές των x και ψ.

9.7. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. Στα παρακάτω σχήµατα να υπολογιστούν οι τιµές των x και ψ. 1 9.7 σκήσεις σχολικού βιβλίου σελίδς 03 0 ρωτήσεις κτνόησης 1. Στ πρκάτω σχήµτ ν υπολογιστούν οι τιµές των x κι ψ. () O x Ρ 3 Θ x 6 Κ Τ Ν Σ O 1 ψ Λ (β) Ζ O (γ) Στο σχήµ () Στο σχήµ (β) Στο σχήµ (γ) Ρ.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ ) ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ. ΚΦΑΛΑΙΟ 11. Παραθέτουμε για εύκολη αναφορά το πινακάκι με την αντιστοιχία χορδών-αποστημάτων-τόξων που χρειάζεται σε όλες σχεδόν τις παρακάτω ασκήσεις Κανονικό εξάγωνο Πλευρά λν Χορδή λ = Απόστημα α =

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE

ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 06-7 Επειδή το ζητήσατε κορίτσια μου: Α. ΘΕΩΡΙΑ Τα κεφάλαια: ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου 9 ο Μετρικές σχέσεις, 0 ο Εμβαδά, ο Μέτρηση Κύκλου, την διδαχθείσα ύλη Β.

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ~ ΙΣΑ ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ~ ΙΣΑ ΤΡΙΓΩΝΑ Β ΘΕΜΑ ΙΣΑ ΤΡΙΓΩΝΑ ΘΕΜΑ 2 _2814 0 Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) με 80.Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ.

Διαβάστε περισσότερα

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση.

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση. 1 Τρίγωνα 11 Στοιχεία και είδη τριγώνων 111 Κύρια στοιχεία τριγώνου Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου Συγκρίνοντας τις πλευρές του τριγώνου μεταξύ τους προκύπτουν

Διαβάστε περισσότερα

ύο θεµελιώδεις ισοδυναµίες. 2. Ιδιότητες αναλογιών. 3. Πρόβληµα Σηµείο Μ διαιρεί εσωτερικά τµήµα ΑΒ = α σε λόγο λ. Να υπολογιστούν τα

ύο θεµελιώδεις ισοδυναµίες. 2. Ιδιότητες αναλογιών. 3. Πρόβληµα Σηµείο Μ διαιρεί εσωτερικά τµήµα ΑΒ = α σε λόγο λ. Να υπολογιστούν τα 1 7.1 7.7 ΘΩΡΙ 1. ύο θεµελιώδεις ισοδυνµίες ν, β 0 ευθ.τµήµτ κι x > 0 τότε = β x β = x = xβ = xβ 2. Ιδιότητες νλογιών β = γ δ δ = βγ (γινόµενο άκρων = γινόµενο µέσων) β = γ δ γ = β δ (ενλλγή των µέσων)

Διαβάστε περισσότερα

Τρίγωνα. Απέναντι από την Α γωνία είναι η α πλευρά, απέναντι από τη Β γωνία είναι η β πλευρά, και απέναντι από τη Γ γωνία είναι η γ πλευρά.

Τρίγωνα. Απέναντι από την Α γωνία είναι η α πλευρά, απέναντι από τη Β γωνία είναι η β πλευρά, και απέναντι από τη Γ γωνία είναι η γ πλευρά. Τρίγωνα Κύρια στοιχεία ενός τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι 3 πλευρές του και οι 3 γωνίες του. Απέναντι από την Α γωνία είναι η α πλευρά, απέναντι από τη Β γωνία είναι η β πλευρά, και

Διαβάστε περισσότερα

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός) Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41. Ύλη: Τρίγωνα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41. Ύλη: Τρίγωνα ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41 Ον/μο:.. Α Λυκείου Ύλη: Τρίγωνα 01-11-15 Θέμα 1 ο : Α. Τι ονομάζουμε γεωμετρικό τόπο; Να αναφέρετε τρεις βασικούς γεωμετρικούς τόπους τους οποίους γνωρίζετε. (7 μον.) Β. Να

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση

9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση 1 9.4 σκήσεις σχολικού βιβλίου σελίδς 194 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ ν συµπληρώσετε τ κενά Ε i) = + +. ii) = + +.Ε. Ν βρεθεί το είδος των ωνιών του τριώνου ότν i) β = + ii) = β iii) β = i) β

Διαβάστε περισσότερα

10.4. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης

10.4. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης 0.4 σκήσεις σχολικού ιλίου σελίδς 0 Ερωτήσεις κτνόησης. Με την οήθει του τύπου Ε = ηµ, ν ποδείξετε ότι Ε Ε = ηµ = Η ισότητ ισχύει ότν ηµ =, δηλδή ˆ = 90 ο, δηλδή σε ορθοώνιο τρίωνο. Σε τρίωνο είνι () =

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000 Ζήτηµ 1ο Θέµτ Γεωµετρίς Γενικής Πιδείς Β Λυκείου 000 Α.1. Σε κάθε τρίγωνο ΑΒΓ µε διάµεσο ΑΜ ν ποδείξετε ότι το άθροισµ των τετργώνων δύο πλευρών του ισούτι µε το διπλάσιο του τετργώνου της διµέσου που

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000 Θέµτ Γεωµετρίς Γενικής Πιδείς Β Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ 1ο Α.1. Σε κάθε τρίγωνο ΑΒΓ µε διάµεσο ΑΜ ν ποδείξετε ότι το άθροισµ των τετργώνων δύο πλευρών του ισούτι µε το διπλάσιο του τετργώνου της διµέσου

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ Διατυπώστε το θεώρημα του Θαλή, κάνετε σχήμα και γράψτε την αναλογία που εκφράζει το θεώρημα του Θαλή στο συγκεκριμένο σχήμα. Απάντηση: «Αν τρείς τουλάχιστον παράλληλες ευθείες

Διαβάστε περισσότερα

ακτίνα του τέλους του µείον τη διανυσµατική ακτίνα της αρχής του. 19. Ποια ανισοτική σχέση ισχύει για το µέτρο του αθροίσµατος δυο διανυσµάτων;

ακτίνα του τέλους του µείον τη διανυσµατική ακτίνα της αρχής του. 19. Ποια ανισοτική σχέση ισχύει για το µέτρο του αθροίσµατος δυο διανυσµάτων; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Α) Ν πντήσετε στις πρκάτω ερωτήσεις 1. Τι ονοµάζετι διάνυσµ κι πώς συµβολίζετι;. Ποιο διάνυσµ ονοµάζετι µηδενικό; 3. Τι ονοµάζετι µέτρο ενός δινύσµτος κι πώς συµβολίζετι; 4. Ποιο διάνυσµ

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) Να αποδείξετε

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

Ορθογώνιο (version )

Ορθογώνιο (version ) Ορθογώνιο (version --06) Ορισμός: Ορθογώνιο λέγεται το παραλληλόγραμμο που έχει μια γωνία ορθή. Επειδή στο παραλληλόγραμμο οι απέναντι γωνίες είναι ίσες, ενώ δύο διαδοχικές γωνίες παραπληρωματικές (ως

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Α και Β Γενικού Λυκείου. ε 3. ε 2. Γ ε 1

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Α και Β Γενικού Λυκείου. ε 3. ε 2. Γ ε 1 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Κ Ε Γ ε 1 ε 2 Ι Ο Ζ μ α Ψ Θ Η Α ε 4 Β Τόμος 2ος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ

Διαβάστε περισσότερα

Γενικές ασκήσεις σελίδας

Γενικές ασκήσεις σελίδας Γενικές σκσεις σελίδς 9 3. ίνετι η εξίσωση + λ 0 (), όπου λ R. Ν ποδείξετε ότι γι κάθε τιµ του λ, η () πριστάνει κύκλο, του οποίου ζητείτι ν ρεθεί το κέντρο κι η κτίν. (ii) Ν ποδείξετε ότι όλοι οι κύκλοι

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα Ερωτήσεις νάπτυξης 1 * Ν κτσκευάσετε το άθροισµ των δινυσµάτων + + 3 όπου 2 * ι ποιες τιµές του πρµτικού ριθµού λ ισχύει ( λ ) < 5 0 ; 3 ** Στο επίπεδο δίνοντι τ µη µηδενικά δινύσµτ, κι, τ οποί νά δυο

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

1 ο ΓΕΛ ΚΑΡΔΙΤΣΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α

1 ο ΓΕΛ ΚΑΡΔΙΤΣΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α 1 ο ΓΕΛ ΚΑΡΔΙΤΣΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1. Ν ποδείξετε ότι ηµ + συν = 1. Α. Ν σημειώσετε το σωστό Σ ή το λάθος Λ

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

Σύνθετα θέματα (version )

Σύνθετα θέματα (version ) .-. Σύνθετα θέματα (version --06) Σ. Δίνεται τρίγωνο ΑΒΓ, η διχοτόμος του ΒΔ και η εξωτερική διχοτόμος του Βx. Θεωρούμε δύο σημεία Ε και Κ της πλευράς ΑΒ. Αν ο κύκλος (Ε,ΕΒ) τέμνει τη ΒΔ στο Ζ, ενώ ο κύκλος

Διαβάστε περισσότερα

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η.

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. α) το τρίγωνο ΒΑΕ είναι ισοσκελές. (Μονάδες 7) β) το ΔΕΓΒ είναι παραλληλόγραμμο.

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version )

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version ) 4.6-4.8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version 5--06) Σ. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και τυχαίο σημείο Δ της πλευράς ΑΒ. Στην προέκταση της ΓΑ προς το Α, παίρνουμε τμήμα ΑΕ = ΑΔ. Να αποδείξετε ότι ΔΕ ΒΓ. ος

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2013 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΤΑΞΗ Α ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ B Κ 1.1 ΕΝΟΤΗΤΑ : Βασικές Γεωμετρικές ένοιες Τάξη : A Γυμνασίου. Καθ. Χρήστος Μουρατίδης

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα